#वेद_vs_विज्ञान भाग - 12
#त्रिकोणमिति
(Trigonometry)
गणित मुझे कभी रास नही आई उसका कारण था इसकी उदासीनता लेकिन भास्कराचार्य का ग्रंथ ‘लीलावती‘ गणित को आनंद के साथ मनोरंजन, जिज्ञासा आदि का सम्मिश्रण करते हुए पढ़ा जा सकता है।
#त्रिकोणमिति
(Trigonometry)
गणित मुझे कभी रास नही आई उसका कारण था इसकी उदासीनता लेकिन भास्कराचार्य का ग्रंथ ‘लीलावती‘ गणित को आनंद के साथ मनोरंजन, जिज्ञासा आदि का सम्मिश्रण करते हुए पढ़ा जा सकता है।
#आज के समयानुसार त्रिकोणमिति -
त्रिकोणमिति गणित की वह शाखा है जिसमें त्रिभुज और त्रिभुजों से बनने वाले बहुभुजों का अध्य्यन होता है। त्रिकोणमिति का शब्दिक अर्थ है त्रिभुज का मापन। त्रिकोणमिति में सबसे अधिक महत्वपूर्ण है समकोण त्रिभुज का अध्ययन। त्रिभुजों और बहुभुजों की भुजाओं की लम्बाई और दो भुजाओं के बीच के कोणों का अध्ययन करने का मुख्य आधार यह है कि समकोण त्रिभुज की किन्ही दो भुजाओं (आधार, लम्ब व कर्ण) का अनुपात उस त्रिभुज के कोणों के मान पर निर्भर करता है।
त्रिकोणमिति गणित की वह शाखा है जिसमें त्रिभुज और त्रिभुजों से बनने वाले बहुभुजों का अध्य्यन होता है। त्रिकोणमिति का शब्दिक अर्थ है त्रिभुज का मापन। त्रिकोणमिति में सबसे अधिक महत्वपूर्ण है समकोण त्रिभुज का अध्ययन। त्रिभुजों और बहुभुजों की भुजाओं की लम्बाई और दो भुजाओं के बीच के कोणों का अध्ययन करने का मुख्य आधार यह है कि समकोण त्रिभुज की किन्ही दो भुजाओं (आधार, लम्ब व कर्ण) का अनुपात उस त्रिभुज के कोणों के मान पर निर्भर करता है।
#वेदों में इसका प्रचुर ज्ञान -
त्रिकोणमति का आधार बोधायन का प्रमेय है। अत: स्वाभाविक रूप से ही त्रिकोणमिति के सिद्धांत भी शुल्ब सूत्रों में दिए गए हैं। भारत के ज्या और कोटिज्या पश्चिम में जाकर साइन और कोसाइन हो गए। वास्तव में ज्या शब्द धनुष की डोरी से आया। वृत्त में अर्द्धव्यास से ज्या (ग प) तथा कोटिज्या (क प) का मान निकालने की पद्धति भारत के गणितज्ञों को ज्ञात थी। यदि कोण ग क प को थ माना जाए, तो आर्यभट्ट (प्रथम) ने कोण थ के हिसाब से ज्या और कोटिज्या का मान निकाला। आर्यभट्ट ने ग प का मान त्रिज्या (क ग) न् ज्या थ तथा ग च (क प) का मान त्रिज्या (क ग) न् कोटिज्या थ बताया। आज की त्रिकोणमिति के अनुसार इन्हें इस प्रकार लिखा जा सकता है-
त्रिकोणमति का आधार बोधायन का प्रमेय है। अत: स्वाभाविक रूप से ही त्रिकोणमिति के सिद्धांत भी शुल्ब सूत्रों में दिए गए हैं। भारत के ज्या और कोटिज्या पश्चिम में जाकर साइन और कोसाइन हो गए। वास्तव में ज्या शब्द धनुष की डोरी से आया। वृत्त में अर्द्धव्यास से ज्या (ग प) तथा कोटिज्या (क प) का मान निकालने की पद्धति भारत के गणितज्ञों को ज्ञात थी। यदि कोण ग क प को थ माना जाए, तो आर्यभट्ट (प्रथम) ने कोण थ के हिसाब से ज्या और कोटिज्या का मान निकाला। आर्यभट्ट ने ग प का मान त्रिज्या (क ग) न् ज्या थ तथा ग च (क प) का मान त्रिज्या (क ग) न् कोटिज्या थ बताया। आज की त्रिकोणमिति के अनुसार इन्हें इस प्रकार लिखा जा सकता है-
आर्यभट्ट ने शून्य से 90' के कोणों के बीच विभिन्न कोणों के लिए ज्या (साइन) के मान निकाल कर उसकी सारिणी भी दी है। भास्कराचार्य की ‘लीलावती‘ में एक रोचक प्रश्न दिया हुआ है- दो बंदर सौ हाथ (एक हाथ उ 20 इंच) ऊंचे पेड़ (च छ) पर बैठे हैं। पेड़ की जड़ से दो सौ हाथ दूर एक कुआं (झ) है। एक बंदर पेड़ (0) से उतर कर कुएं तक जाता है।
दूसरा बंदर एक निश्चित ऊंचाई (ज) तक एकदम सीधे ऊपर उछल कर सीधे कुएं तक छलांग लगाता है। यदि दोनों बन्दरों की तय की हुई दूरी समान है (छ च अ च झ उ छ ज अ ज झ) तो दूसरा बन्दर कितना ऊपर उछला अर्थात् छ ज कितना है? यह प्रश्न निश्चित रूप से त्रिकोणमिति का है और इसी से छज की दूरी 50 हाथ आती है। स्पष्ट है कि भास्कराचार्य ने त्रिकोणमिति के सभी सिद्धान्तों (सूत्रों) का वर्णन लीलावती में किया है।
#आर्यभट्ट ने त्रिभुज का क्षेत्रफल निकालने का सूत्र भी दिया है। यह सूत्र इस प्रकार है-
त्रिभुजस्य फलशरीरं समदल कोटी भुजार्धासंवर्ग:।
त्रिभुजस्य फलशरीरं समदल कोटी भुजार्धासंवर्ग:।
#π का मान निकलने में -
किसी वृत्त के व्यास तथा उसकी परिधि के (घेरे के) प्रमाण को आजकल पाई कहा जाता है। पहले इसके लिए माप १० (दस का वर्ग मूल) ऐसा अंदाजा लगाया गया। एक संख्या को उसी से गुणा करने पर आने वाले गुणनफल की प्रथम संख्या वर्गमूल बनती है। जैसे- २न्२ उ ४ अत: २ ही ४ का वर्ग मूल है। लेकिन १० का सही मूल्य बताना यद्यपि कठिन है, पर हिसाब की दृष्टि से अति निकट का मूल्य जान लेना जरूरी था। इसे आर्यभट्ट ऐसे कहते हैं-
चतुरधिकम् शतमष्टगुणम् द्वाषष्ठिस्तथा सहस्राणाम्
अयुतद्वयनिष्कम्भस्यासन्नो वृत्तपरिणाह:॥
अयुतद्वयनिष्कम्भस्यासन्नो वृत्तपरिणाह:॥
(आर्य भट्टीय-१०)
अर्थात् एक वृत्त का व्यास यदि २०००० हो, तो उसकी परिधि ६२२३२ होगी।
परिधि - ६२८३२
व्यास - २००००
आर्यभट्ट इस मान को एकदम शुद्ध नहीं परन्तु आसन्न यानी निकट है,
अर्थात् एक वृत्त का व्यास यदि २०००० हो, तो उसकी परिधि ६२२३२ होगी।
परिधि - ६२८३२
व्यास - २००००
आर्यभट्ट इस मान को एकदम शुद्ध नहीं परन्तु आसन्न यानी निकट है,
#विशेष --
भास्कराचार्य की ही पुस्तक ‘सिद्धांत शिरोमणि‘ के चौथे खण्ड ग्रह-गणित में किसी ग्रह की तात्क्षणिक गति निकालने के लिए अवकलन (डिफरेन्शिएशन) का प्रयोग किया गया है। यह गणित (कैलकुलस) आधुनिक विज्ञान तथा प्रौद्योगिकी का आधार है। लाईबटेनिज तथा न्यूटन इसके आविष्कारकर्ता माने जाते हैं। इन दोनों से सैकड़ो वर्ष पूर्व भास्कराचार्य ने कैल्कुलस का प्रयोग ग्रहों की गति निकालने के लिए किया था। इस प्रकार गणित के क्षेत्र में प्राचीन भारत की श्रेष्ठता का हमें ज्ञान होता है।
भास्कराचार्य की ही पुस्तक ‘सिद्धांत शिरोमणि‘ के चौथे खण्ड ग्रह-गणित में किसी ग्रह की तात्क्षणिक गति निकालने के लिए अवकलन (डिफरेन्शिएशन) का प्रयोग किया गया है। यह गणित (कैलकुलस) आधुनिक विज्ञान तथा प्रौद्योगिकी का आधार है। लाईबटेनिज तथा न्यूटन इसके आविष्कारकर्ता माने जाते हैं। इन दोनों से सैकड़ो वर्ष पूर्व भास्कराचार्य ने कैल्कुलस का प्रयोग ग्रहों की गति निकालने के लिए किया था। इस प्रकार गणित के क्षेत्र में प्राचीन भारत की श्रेष्ठता का हमें ज्ञान होता है।
साभार: अजेष्ठ त्रिपाठी, https://m.facebook.com/story.php?story_fbid=271458346653911&id=100013692425716
No comments:
Post a Comment
Note: only a member of this blog may post a comment.